Physics Education

Physics education or physics education research (PER) refers both to the methods currently used to teach physics and to an area of pedagogical research that seeks to improve those methods. Historically, physics has been taught at the high school and college level primarily by the lecture method together with laboratory exercises aimed at verifying concepts taught in the lectures. These concepts are better understood when lectures are accompanied with demonstration, hand-on experiments, and questions that require students to ponder what will happen in an experiment and why. Students who participate in active learning for example with hands-on experiments learn through self discovery. By trial and error they learn to change their preconceptions about phenomena in physics and discover the underlying concepts.

Unfortunately, owing to the abstract and counter-intuitive nature of many of the elementary concepts in physics, together with the fact that teaching through analogies can lead to didaskalogenic confusions, the lecture method often fails to help students overcome the many misconceptions about the physical world that they have developed before undertaking formal instruction in the subject. In most introductory physics courses mechanics usually is the first area of physics that is discussed. Newton's laws of motion, which describe how massive objects respond to forces, are central to the study of mechanics. Newton arrived at his three laws of motion from an extensive study of empirical data including many astronomical observations.

However, students frequently have preconceptions about the world around them that makes it difficult for them to accept Newton's Laws of Motion. As an example Newton's First Law, also known as the law of inertia, states that, in an inertial frame, a body at rest will remain at rest and that a body moving at constant velocity will continue to move with the same velocity unless a net force acts on the body. Many students hold the misconception that a net force is required to keep a body moving at constant velocity. They know that to slide a book across a table a "push" has to be exerted on the book. However, they fail to take into account that there is more than one force acting on the book when it is being pushed across the table at constant velocity. In addition to the "push" being exerted, there also is a frictional force in the opposite direction acting on the book from the tabletop. When the book moves at constant velocity those two forces balance out (add vectorially) to produce a net force of zero.

In an active learning environment students might experiment with objects in an environment that has almost no friction, for example a block moving on an almost frictionless air table. There they would find that if they start the block moving at constant speed, it continues to move at constant speed without the need for a constant "push". It is hoped that exercises of this nature will help students to overcome their preconceived ideas about motion.