Mental Testing

The abstraction of g stems from the observation that scores on all forms of cognitive tests correlate positively with one another. g can be derived as the principal factor from cognitive test scores using the method of principal components analysis or factor analysis.

The relationship of g to intelligence tests may be understood by an example. Irregular objects, such as the human body, are said to vary in "size". Yet no single measurement of a human body is obviously preferred to measure its "size". Instead, many and various measurements, such as those taken by a tailor, may be made. All of these measurements will be positively correlated with each other, and if one were to "add up" or combine all of the measurements, the aggregate would give a better description of an individual's size than any single measurement. The method of factor analysis allows this. The process is intuitively similar to taking the average of a sample of measurements of a single variable, but instead "size" is a summary measure of a sample of variables. g is like size, in that it is abstracted from various measures (of cognitive ability). Of course, variation in "size" does not fully account for all variation in the measurements of a human body. Factor analysis techniques are not limited to producing single factors, and an analysis of human bodies might produce (for example) two major factors, such as height and girth. However, the scores of tests of cognitive ability do in fact produce a primary dominant factor, g.

Tests of cognitive ability derive most of their validity from the extent to which they measure g. If quantifiable measures of the performance of a task correlate highly with g, it is said to be g-loaded. Creators of IQ tests, whose goals are generally to create highly reliable and valid tests, have thus made their tests as g-loaded as possible. Historically, this has meant dampening the influence of group factors by testing as wide a range of mental tasks as possible. However, tests such as Raven's Progressive Matrices are considered to be the most g-loaded in existence, even though Raven's is quite homogeneous in the types of tasks comprising it.

Elementary cognitive tasks (ECTs) also correlate strongly with g. ECTs are, as the name suggests, simple tasks that apparently require very little intelligence, but still correlate strongly with more exhaustive intelligence tests. Determining whether a light is red or blue and determining whether there are four or five squares drawn on a computer screen are two examples of ECTs. The answers to such questions are usually provided by quickly pressing buttons. Often, in addition to buttons for the two options provided, a third button is held down from the start of the test. When the stimulus is given to the subject, he removes his hand from the starting button to the button of the correct answer. This allows the examiner to determine how much time was spent thinking about the answer to the question (reaction time, usually measured in small fractions of second), and how much time was spent on physical hand movement to the correct button (movement time). Reaction time correlates strongly with g, while movement time correlates less strongly.

ECT testing has allowed quantitative examination of hypotheses concerning test bias, subject motivation, and group differences. By virtue of their simplicity, ECTs provide a link between classical IQ testing and biological inquiries such as fMRI studies.